Reg. No:					
1106. 110.		1			

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech II Year I Semester Supplementary Examinations November-2022 SWITCHING THEORY AND LOGIC DESIGN

(Electronics and Communication Engineering)

T	ime: 3 hours	Max. Mar	ks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I		
1	a State and prove any two Boolean theorems with examples.	L3	6M
	b Simplify the following Boolean functions to minimum number of literals: i. (a+b)'(a'+b')' ii. y(wz'+wz) + xy OR	L4	6M
2	a Express the following functions in sum of Minterms and product of Maxterms. i. $F(A,B,C,D) = B'D + A'D + BD$ ii. $F(x,y,z) = (xy+z)(xz+y)$	L2	6M
	b Express the following Boolean functions in to Canonical form: i. F=AB+BC+CA ii. F=XY+Z+YZ+XYZ UNIT-II	L2	6M
3	a Simplify the Boolean expression using K-map and draw the logic diagram using AOI. F=A'+AB+ABD'+AB'D'+C'	L4	6M
	b Simplify the Boolean function using 5 variable K-map. $F=\sum m(0, 1, 2, 4, 7, 8, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 31)$ OR	L4	6M
4	Simplify the following Boolean function using Tabulation method, realize with NAND gates and NOR gates. $Y(A, B,C,D) = \Sigma(1,3,5,8,9,11,15)$.	L4	12M
5	a Design a 4 bit binary-to-BCD code converter.	L3	6M
	b Design & implement Full Adder with truth table.	L3	6M
	OR		
6	a What is Decoder? Explain a 2 to 4 line binary decoder.	L2	6M
	b What is multiplexer? Construct 4:1 multiplexer with logic gates and truth table. UNIT-IV	L3	6M
7	a What is a sequential circuit? Explain with the help of a block diagram.	L2	6M
	b Explain the working principle of JK Flip-Flop in detail. OR	L2	6M
8	a Explain in brief about any two types of shift registers.	L2	6M
	b Design a 4-bit Ripple counter. UNIT-V	L4	6M
9	a Explain the following related to sequential circuits with suitable examplesi. State diagramii. State table	L2	6M
	b Compare ROM and RAM.	L2	6 M
10	OR		
10	Illustrate the PAL for the following Boolean function i. $A(w,x,y,z) = \sum m (0,2,6,7,8,9,12,13)$ ii. $B(w,x,y,z) = \sum m (0,2,6,7,8,9,12,13,14)$	L3	12M